Effect of depolarizing concentrations of potassium on calcium uptake and metabolism in rat liver

Wayne M. Taylor, Erika van de Pol, Dirk F. van Helden*, Peter H. Reinhart and Fyfe L. Bygrave

Department of Biochemistry, The Faculty of Science, and *Department of Pharmacology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia

Received 8 December 1984

Exposure of perfused livers of fed rats to 60 mM K⁺ induces rapid responses in the Ca²⁺-sensitive metabolic events, glycogenolysis, cytoplasmic and mitochondrial NADH/NAD ratios and octanoate oxidation. All increase within 45 s of K⁺ addition. Metabolic responses were not observed following K⁺ addition to livers perfused in the absence of added Ca²⁺. Movements of Ca²⁺ into the liver were suggested from experiments in which ⁴⁵Ca²⁺ uptake was measured. The Ca²⁺ antagonists verapamil, diltiazem and Ni²⁺ essentially abolished changes to tissue metabolism and Ca²⁺ fluxes induced by K⁺ addition. K⁺-induced changes were consistent with Ca²⁺ channel activiation.

Liver Potassium depolarization Glycogenolysis Calcium antagonist

1. INTRODUCTION

Calcium channels in the plasma membrane play a crucial role in a number of different tissues by coupling membrane excitation to cellular responses such as hormone secretion, neurotransmitter release and muscle contraction (review [1]). While the activation of Ca²⁺ channels by membrane depolarization in tissues like smooth and cardiac muscles and brain has been known for a number of years, many important details remain to be established [1,2].

Although the possible operation of such Ca²⁺ channels in liver tissue has not been extensively investigated, in recent reports it has been suggested that Ca²⁺ channels or pores may play a role in the elevation of cytoplasmic Ca²⁺ concentrations in perfused rat liver and hepatocytes in response to the action of adrenergic agonists [3,4]. These compounds are known to stimulate unidirectional Ca²⁺ influx in rat hepatocytes [4–7] and in perfused rat liver [3].

One approach to the study of Ca²⁺ channels has relied on the ability of pharmacological agents known as Ca²⁺ antagonists to inhibit selectively

Ca²⁺ channel operation [2,8]. In this regard a recent study which examined Ca²⁺ antagonist binding in a range of tissues indicated that Ca²⁺ channels may also be present in liver [2].

Here we have examined the effect of depolarizing concentrations of K^+ on aspects of Ca^{2+} -sensitive metabolism in perfused rat liver. The results described are consistent with the notion that Ca^{2+} channels are present in the liver plasma membrane.

2. EXPERIMENTAL

2.1. Animals and perfusions

Wistar-strain albino rats (200–280 g body wt) having free access to food were anaesthetized with sodium pentobarbitone (50 mg/kg). Livers were perfused with Krebs-Henseleit [9] bicarbonate medium equilibrated with O₂/CO₂ (19:1) in a flow-through mode as in [10]. The perfusion medium was modified to contain 1.3 mM CaCl₂ and a proportion of the final NaCl content (55 mM NaCl) was administered to the perfusate by an infusion syringe containing 4 M NaCl. During the perfusion the perfusate KCl concentration

could be increased from 5 to 60 mM by replacing the NaCl infusion syringe with an identical syringe of 4 M KCl. In this manner the perfusate K^+ concentrations were routinely maintained at 60 mM from 16 min of perfusion till the conclusion of the experiment. When Ca^{2+} was omitted from the perfusion medium the Ca^{2+} concentration was reduced to approx. $5 \mu M$ as revealed by atomic absorption spectroscopy.

2.2. Analytical procedures

Perfusate oxygen concentrations were continuously monitored with a Clark-type oxygen electrode as detailed [10]. Effluent perfusate was assayed for glucose by the glucose oxidase/peroxidase method as described [11]. Perfusate lactate, pyruvate and ketone bodies as well as production of $^{14}\text{CO}_2$ from [1- ^{14}C]octanoate was estimated as in [12]. Loss of Ca²⁺ from the perfusate was determined as described [3]. Lag times for oxygen responses and metabolite outputs (glucose, lactate, pyruvate, β -hydroxybutyrate, acetoacetate and $^{45}\text{Ca}^{2+}$ were determined as in [12] and the time courses of the responses corrected accordingly.

2.3. Chemicals and materials

The glucose assay kit (510-A) and nifedipine were obtained from Sigma, St Louis, MO. Lactate dehydrogenase and β -hydroxybutyrate dehydrogenase were from Boehringer, Mannheim. Hyamine hydroxide and [1- 14 C]octanoate were supplied by New England Nuclear, Boston, MA. Verapamil was from Knoll, Munich, and diltiazem was a kind gift from Professor D. Marme, Goedecke Research Institute, Freiburg, FRG. All other chemicals were of analytical grade.

3. RESULTS

3.1. Effect of K^+ on various metabolic responses in the perfused rat liver

The effects of increasing the perfusate K⁺ concentration from 4 to 60 mM on a number of metabolic responses, previously shown to be stimulated following the administration of Ca²⁺-mobilizing hormones to the perfused rat liver [10,12], are shown in fig.1. Increased glucose output (fig.1a) is evident between 30 and 40 s after K⁺ addition. Maximal increases of approx. 150% are observed by 75 s. A sharp decline in glucose output

follows to reach values only 35% above basal levels by 90-100 s. A further increase in glucose output is then observed which continues from 2 to 6 min of K^+ infusion, when the experiments were terminated.

Omission of Ca^{2+} from the perfusate completely prevents K^+ -induced changes in glucose output. In addition the figure shows that maximally effective doses of the Ca^{2+} antagonists verapamil (4 μ M), diltiazem (50 μ M) and Ni²⁺ (1.3 mM) almost completely prevent K^+ -induced changes in glucose output. Half-maximal inhibition by verapamil, diltiazem and Ni²⁺ was observed at approx. 0.5, 10 and 250 μ M, respectively. In contrast, nifedipine, a potent Ca^{2+} antagonist in other tissues [2,8], had no effect on K^+ -induced effects in the perfused liver when used at up to 2 μ M (not shown).

As detailed in section 2, whenever perfusate K⁺ concentrations were elevated to 60 mM, a corresponding decrease in Na⁺ concentration was achieved. Changes in Na⁺ concentration, however, did not appear to be involved in the metabolic effects described, since in control experiments where Na⁺ was replaced by choline, no significant metabolic effects were observed.

Additionally, co-infusion of the α_1 -adrenergic antagonist, prazosin, failed to influence the K^+ -induced changes in glucose output observed in fig.1.

The effect of raising the external K+ concentration to 60 mM on perfusate [lactate]/[pyruvate] and [\beta-hydroxybutyrate]/[acetoacetate] ratios, indicators of liver cytoplasmic and mitochondrial [NADH]/[NAD] ratios, respectively [13], are shown in fig.1b and c. Increases in the [lactate]/ [pyruvate] and $[\beta$ -hydroxybutyrate]/[acetoacetate] ratios were evident 30-40 and 70-75 s after K⁺ addition, respectively. Whereas the enhanced [lactate]/[pyruvate] ratio rapidly decreased after 45 s. the increased $[\beta$ -hydroxybutyrate]/[acetoacetate] ratio remained maximally stimulated from 2 min onwards. Similar to responses in glucose output, these K⁺-induced effects were almost totally abolished by pretreatment of livers for 5 min with either 4 µM verapamil or 50 µM diltiazem. Likewise, K⁺-induced effects were not observed if Ca²⁺ was omitted from the perfusion medium (not shown).

The rate of oxidation of tracer amounts of [1-14C]octanoate to 14CO₂ has previously been

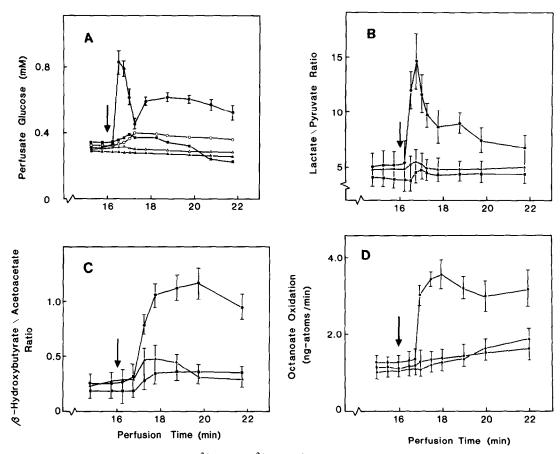


Fig. 1. Effect of verapamil, diltiazem, Ni^{2+} and Ca^{2+} on K^+ -induced changes to metabolic responses. Livers were perfused as described in section 2. The perfusate was sampled at the times indicated for glucose (A), for lactate and pyruvate (B), for β -hydroxybutyrate and acetoacetate (C), or for $[1^{-14}C]$ octanoate oxidation to $^{14}CO_2$ (D). After 12 min of perfusion verapamil (4 μ M, \blacksquare), diltiazem (50 μ M, \triangle) or Ni^{2+} (1.3 mM, \bigcirc) was continuously infused where indicated. The perfusate K^+ concentration was increased to 60 mM at 16 min (arrowed). In experiments where no added Ca^{2+} was present (\triangle), livers were initially perfused for 10 min with buffer containing 1.3 mM Ca^{2+} and thereafter without added Ca^{2+} . In some experiments prazosin (2 μ M) was infused at 12 min and exhibited K^+ -induced responses identical to the control (\bullet). In panel A data shown are the means \pm SE of 8 experiments where K^+ alone was administered (\bullet) and the means of 5 separate experiments for all other additions. For clarity the SE values (all of which were less than \pm 10%) have been omitted in these latter experiments. In panels B and C, data shown are the means \pm SE for 4 separate experiments in the absence (\bullet) and 3 separate experiments in the presence of verapamil or diltiazem. In panel D livers were continuously infused with $[1^{-14}C]$ octanoate (25.1 μ Ci/mol) to a final concentration of 0.2 μ M. Samples of perfusate were assayed for $^{14}CO_2$ as described in section 2. Data shown are the means \pm SE of 4 separate experiments in the absence (\bullet) and 3 separate experiments in the presence of verapamil or diltiazem.

used to monitor tricarboxylic acid cycle flux in the perfused rat liver [12,14]. As shown in fig.1a, an increase in octanoate oxidation was evident 60 s after K^+ addition and maximal rates were observed by 90 s; thereafter the effect slowly declined. This K^+ -induced effect was also abolished by pretreatment with verapamil or diltiazem or by the omission of Ca^{2+} from the perfusate (not shown).

3.2. Evidence that increasing the perfusate K^+ concentration promotes Ca^{2+} inflow

The change in Ca²⁺-sensitive metabolism seen in fig.1 following K⁺ addition to the perfusion medium suggested that such action led to Ca²⁺ influx. This was tested directly with experiments employing ⁴⁵Ca²⁺ [3], since the Ca²⁺-selectrode [10] could not accurately monitor perfusate Ca²⁺

concentration changes under these experimental conditions where K⁺ concentrations were varied widely.

A tracer amount of ⁴⁵Ca²⁺ was continuously infused into the inflowing perfusion medium, from 5 min before K⁺ addition. The ⁴⁵Ca²⁺ content of the effluent perfusion medium reached a steady level within 2–3 min, which corresponded to the continuous uptake of approx. 1.8% of the inflowing ⁴⁵Ca²⁺. The uptake of radioisotope apparently reflects the continuing exchange of extracellular ⁴⁵Ca²⁺ for ⁴⁰Ca²⁺ in both extracellular and intracellular compartments [3].

The effect of K⁺ addition on the uptake of ⁴⁵Ca²⁺ from the perfusate is shown in fig.2. The effect is transient with an enhanced rate of uptake being observed some 20–30 s after K⁺ addition. Maximal effects occur by 40–50 s and thereafter decline to reach basal values by 2–3 min. These Ca²⁺ movements are almost completely abolished by pretreatment with the Ca²⁺ channel blocker verapamil (fig.2).



Fig. 2. Effect of verapamil on K⁺-induced uptake of perfusate ⁴⁵Ca²⁺. Livers of fed rats were perfused with Krebs-Henseleit buffer containing 1.3 mM Ca²⁺ as described in section 2. A tracer amount of ⁴⁵Ca²⁺ (final spec. act. ~50 nCi/ml) was continuously infused into the inflowing buffer after 11 min of perfusion. In some experiments verapamil (final concentration, 4 μM) was continuously infused after 12 min of perfusion. At 16 min the perfusate K⁺ concentration was increased to 60 mM (arrowed) as detailed in section 2. Effluent samples were taken for determination of radioactivity. Data shown are the means ± SE of 4 experiments in the absence (•) and 3 experiments in the presence of verapamil (•).

4. DISCUSSION

Our data show that a number of metabolic responses known to be enhanced by Ca^{2+} -mobilizing hormones in the perfused rat liver (review [15]) are similarly stimulated by a rapid increase in the perfusate K^+ concentration. The K^+ -induced metabolic responses occurred in the presence of the α_1 -adrenergic blocker prazosin, clearly suggesting the non-involvement of the α_1 -receptor in any mobilization of the Ca^{2+} that may have resulted here.

The conclusion that an increased inflow of Ca^{2+} into the perfused rat liver did take place in the present work consequent to the action of depolarizing concentrations of K^+ is supported by the following observations.

(i) Changes observed in perfusate ⁴⁵Ca²⁺ content were consistent with a transient stimulation of Ca²⁺ uptake by the tissue. (ii) All metabolic responses to K⁺ addition were obligatorily dependent on the presence of extracellular Ca²⁺. (iii) The responses were almost completely inhibited by the Ca²⁺ channel blockers verapamil, diltiazem and Ni²⁺. The concentration of these agents required to inhibit the effects of K+ addition were in the range used to inhibit Ca2+ channels in other tissues and were well below the range where these agents may interact with calmodulin [16]. Thus the inhibitory effects of Ca²⁺ antagonists on metabolic responses were unlikely to result indirectly from an inhibition of calmodulin-sensitive steps in the various metabolic pathways. Further evidence suggesting enhanced Ca²⁺ influx was provided in experiments in which the metabolic effects of K+ were examined. These effects mimicked those induced by α -adrenergic agonists and the Ca²⁺ ionophore A23187, agents previously shown to alter Ca²⁺ distribution in liver cells and to elevate cytoplasmic Ca²⁺ concentrations [17-20]. Thus increases in glucose output in response to α -agonists, A23187 and K+ addition may all arise from an enhanced cytoplasmic Ca2+ concentration and subsequent activation of phosphorylase kinase. Other similar metabolic effects induced by these agents may also result from an altered distribution of cellular Ca²⁺.

The question arises as to whether the inflow of Ca²⁺ suggested by the above-mentioned observations occurs via specific Ca²⁺ channels located in the plasma membrane. Certainly concentrations of

K⁺ ranging from 50 to 110 mM previously have been used to induce membrane depolarization and activation of Ca²⁺ channels in a number of different tissue preparations [21–23]. Although the operation of such channels in liver tissue has been suggested by previous workers [7], it is only recently that more substantive evidence for their presence has appeared [3,4].

However, the present data also do not necessarily indicate the presence of voltage-dependent Ca²⁺ channels in rat liver. Whilst K⁺-induced effects were inhibited by agents which effectively block these channels in other tissues, the Ca²⁺ antagonists used may also inhibit receptor-operated Ca²⁺ channels [24] and may have other nonspecific effects [25].

The K^+ -induced metabolic responses described probably do not result from the operation of Ca^{2+} -activated K^+ channels since some evidence suggests that these channels are not operative in rat liver [26,27] and apamin, an agent which inhibits Ca^{2+} -activated K^+ channels in other tissues did not affect the K^+ -induced responses (not shown).

Finally, work in the present paper has revealed a further useful means whereby the interplay of extracellular and cytoplasmic Ca^{2+} and the ensuing induced physiological responses (review [15]), can be explored in the intact perfused rat liver independent of α_1 -receptor occupancy.

REFERENCES

- [1] Tsien, R.W. (1983) Annu. Rev. Physiol. 45, 341-358.
- [2] Glossman, H., Ferry, D.R., Luebbecke, F., Mewes, R. and Hofmann, F. (1982) Trends Pharmacol. Sci. 3, 431-437.
- [3] Reinhart, P.H., Taylor, W.M. and Bygrave, F.L. (1984) Biochem. J. 220, 43-50.
- [4] Mauger, J.-P., Poggioli, J., Guesdon, F. and Claret, M. (1984) Biochem. J. 221, 121-127.

- [5] Keppens, S., Vanvenheede, J.R. and De Wulf, H. (1977) Biochim. Biophys. Acta 496, 448-457.
- [6] Assimacopoulos-Jeannet, F.D., Blackmore, P.F. and Exton, J.H. (1977) J. Biol. Chem. 252, 2662-2669.
- [7] Barritt, G.J., Parker, J.C. and Wadsworth, J.C. (1981) J. Physiol. 312, 29-55.
- [8] Naylor, W.G. and Horowitz, J.D. (1983) Pharmacol. Ther. 20, 203-262.
- [9] Krebs, H.A. and Henseleit, K. (1932) Hoppe-Seyler's Z. Physiol. Chem. 210, 33-66.
- [10] Reinhart, P.H., Taylor, W.M. and Bygrave, F.L. (1982) Biochem. J. 208, 619-630.
- [11] Reinhart, P.H., Taylor, W.M. and Bygrave, F.L. (1982) J. Biol. Chem. 257, 1906-1912.
- [12] Taylor, W.M., Reinhart, P.H. and Bygrave, F.L. (1983) Biochem. J. 212, 555-565.
- [13] Williamson, D.H., Lund, P. and Krebs, H.A. (1967) Biochem. J. 103, 514-527.
- [14] Sobell, S., Heldt, S.W. and Scholz, R. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 247-260.
- [15] Reinhart, P.H., Taylor, W.M. and Bygrave, F.L. (1984) Biochem. J. 223, 1-13.
- [16] Daly, M.J., Perry, S. and Nayler, W.G. (1983) Eur. J. Pharmacol. 90, 103-108.
- [17] Murphy, E., Coll, K., Rich, T.L. and Williamson, J.R. (1980) J. Biol. Chem. 225, 6600-6608.
- [18] Charest, R., Blackmore, P.F., Berthon, B. and Exton, J.H. (1983) J. Biol. Chem. 258, 8769-8773.
- [19] Berthon, B., Binet, A., Mauger, J.-P. and Claret, M. (1984) FEBS Lett. 167, 19-24.
- [20] Studer, R.K., Snowdowne, K.W. and Borle, A. (1984) J. Biol. Chem. 259, 3596-3604.
- [21] Toll, L. (1982) J. Biol. Chem. 257, 13189-13192.
- [22] Flockerzi, V., Mewes, R., Ruth, P. and Hofmann, F. (1983) Eur. J. Biochem. 135, 131-142.
- [23] Tan, K. and Tashjian, A.J. (1984) J. Biol. Chem. 259, 418-426.
- [24] Towart, R. and Schramm, M. (1984) Trends Pharmacol. Sci. 5, 111-113.
- [25] Reinhart, P.H., Taylor, W.M. and Bygrave, F.L. (1984) Biochem. J. 218, 765-773.
- [26] Burgess, G.M., Claret, M. and Jenkinson, D.H. (1981) J. Physiol. 317, 67-90.
- [27] Jenkinson, D.H., Haylett, D.G. and Cook, N.S. (1983) Cell Calcium 4, 429-437.